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A stochastic model for a first-order metabolizing system which was studied 
in the deterministic sense by Branson and others is formulated and a detailed 
study of the random integral equation arising in the probabilistic model is 
presented. The equation is used to describe the evolution in time of the amount  
of metabolite present in the system. Specifically we present a study of the 
random integral equation of the Volterra type given by 

M(t; ~o) = M(O; w) e -c~ + oJ) e -~(~-') dr, t >~ 0 

where M(t; ~o) is an unknown random function giving the amount of meta- 
bolite in the system at time t ~> O. This equation can be expressed in the 
general form 

x(t; ~) = h(t; ~) + f l  k(t, 7; ~)f(~, x(~; ~)) d~, t 1> 0 

which is of a type whose theoretical aspects have recently been studied by 
the present authors using as a basis the techniques of probabilistic functional 
analysis. Conditions are derived under which there exists a unique random 
solution to the above equation. The usefulness of the model is illustrated 
using computer simulation by considering a one-organ model, an organ-  
heart model, and a multicompartment model. 
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I .  I N T R O D U C T I O N  

In endeavoring to study any biological or biochemical system, whether it be 
relatively simple in nature or extremely complex, scientific thought is 
ceaselessly forging new tools and constructing new models. The aim is always 
to create more efficient techniques and more realistic models better suited 
to deal with the problem under consideration than those currently in use. 
The development of these techniques, of course, owes much to various 
disciplines but the contribution of probability theory and statistics is particu- 
larly important. The scope and applicability of probabilistic models is 
extremely wide and their use continues to develop rapidly. The purpose of 
this paper is therefore fourfold: 

. To consider a model of a general metabolizing system which has 
previously been treated by Branson, (2,3~ Wijsman, a2~ and Hearon, m 
from a strictly deterministic view point using integral equation 
techniques. 

. To formulate a random model of the system which we believe to be 
a more realistic description of the metabolizing process than that 
offered by the deterministic model. 

. To apply some theoretical techniques pertaining to random Volterra 
integral equations recently developed by the authors to obtain 
information concerning the existence and uniqueness of a random 
solution to the random integral equation which arises in the proba- 
bilistic formulation of the model. 

. To illustrate the usefulness of the formulated model using computer 
simulation by considering a one-organ model, an organ-heart 
model, and a multicompartment model. 

This type of approach has proved successful in the study of similar problems 
arising in the fields of chemotherapy, (v,8) turbulence theory, (9~ and 
telephone traffic theory, lal 

In Section 2 we shall give a deterministic description of the model and 
indicate some of the recent effort in the subject area. The proposed stochastic 
model, the theoretical preliminaries, and main results are given in Sections 3, 
4, and 5, respectively. The usefulness of the proposed stochastic model is 
illustrated by a computer simulation of three basic models, namely a one- 
organ model, an organ-heart model, and a multicompartment model, in 
Section 6. In Section 7 we summarize our findings and state certain concluding 
remarks on the proposed model. 
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2. T H E  D E T E R M I N I S T I C  M O D E L  

The study of metabolizing systems is of vital concern to biochemists, 
who have made repeated attempts to describe these systems mathematically. 
In very general terms, a metabolizing system can be considered as an irregu- 
larly shaped region of complex structure where a substance, called the 
metabolite, is being produced, consumed, transported, modified, or stored. (2) 
This process involves the synthesis of various compounds which are passed 
directly or via the lymphatics into the blood stream, in which they are 
rapidly mixed and then passed either through the capillaries to enter the 
tissue fluids or to the breakdown sites. The metabolic rates vary greatly, with 
some molecules traversing the circuit quite rapidly and others more slowly. 
Thus the multitude and complexity of these diffusion processes, along with 
fluctuating rates of the molecules, which take place simultaneously in this 
biological system make a deterministic mathematical description of the 
metabolizing process virtually impossible and at best highly speculative. 
Biochemists have, however, made various attempts to describe these reaction 
systems and have in many instances used as their mathematical models 
deterministic integral equations. (2-~,12) Integral equation descriptions seem 
to be especially suited to biological models in that they are well able to handle 
situations in which the state of the system depends not only on the immediately 
preceding states but also on all previous states. 

Branson (~,3) describes a general metabolizing system using a deterministic 
integral equation of the Volterra type. The process of interest is the evolution 
in time of the amount of metabolite in the system. The function of time which 
describes this evolution shall be denoted by M. Also associated with any 
metabolizing system will be two functions F and R which we shall call the 
metabolizing functions. Physically these functions have the following inter- 
pretation: M(t)  is the amount of metabolite present in the system at time t; 
R(t) is the rate at which the metabolite is entering the system from the 
outside at time t; and F(t -- % M&))  is the fraction left at time t of any 
amount of metabolite which entered the system at time 0 ~ r ~< t. 

The essential idea in the integral equation description is that the amount 
of metabolite present in the system at time t is attributable to two sources: 
the amount remaining from the initial amount present and the amount 
remaining from that which has entered the system from outside sources at 
any time r ~< t. Under the assumption that the above is an adequate descrip- 
tion of the metabolizing system under study, the following deterministic 
integral equation was proposed by Branson(2): 

M(t)  = M(O)F(t, M(O)) q- fo R(z)F(t -- % M(T)) dz, t >~ o (1) 

822[8]'I-6 
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The unknown function is M and the equation is of the Volterra type. There 
has been some question raised as to the general validity of Eq. (1) as a 
description of an arbitrary metabolizing system, (~,12) but there does seem to 
be general agreement that it is valid in the case of a first-order reaction. We 
shall therefore consider this special case in detail. 

In the case of a first-order reaction the metabolizing function F(t - -r,M(-r)) 
reduces to an exponential function, namely 

F(t - -  -r, M(r) )  = e -~(~-~), c > 0 

In this case Eq. (1) can be written as 

M(t )  = M(O) e -~  -k fo R(r) e -~(~-~) dr, t ~> 0 (2) 

We shall investigate the random analog to the above equation. 

3. T H E  R A N D O M  M O D E L  

The deterministic approach to a metabolizing system essentially assumes 
that there is one rate function and one metabolizing function associated 
with the system which together with the initial condition M(0) strictly 
determine how the metabolite evolves in time. That is, these entities determine 
a function M(t )  and, ideally speaking, there is no deviation from this function. 
The researcher then attempts from experimental data to determine the " t rue" 
form for these functions. The usual technique is to obtain at various times of 
interest several observations on the values of the function R(t),  then use as 
the " t rue" value some estimate based on these observations, usually the mean. 
In this way a single approximating curve for R(t)  is obtained. This approxima- 
tion is then used as the true form for R(t)  in subsequent work with the model. 

The stochastic approach to the problem assumes that if the above 
procedure were repeated many times, then corresponding to each replication 
there would arise an approximation for R(t).  However, due to the complex 
and inherently random nature of the metabolizing process, in light of 
diffusion processes and varying metabolic rates, it is highly likely that the 
approximating curves so obtained will differ significantly from one another 
even under the most carefully controlled experimental conditions. If  indeed the 
variation is large, then there is evidence that there is more than just experi- 
mental error entering into the picture and that in fact we are not dealing 
with a deterministic function but rather with a random one. In this case the 
use of an approximation for R(t)  in the deterministic mathematical model 
could yield quite unstatisfactory results. Thus it is more realistic and accurate 
to assume in the model itself that the functions involved are indeed random 
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and search for a random solution to the random integral equation obtained 
and study its statistical properties. 

With this in mind we shall formulate the random analog of equation (2) 
as follows: 

M(t; co) = M(O; co) e -~t + fo ~ R('r; co) e -~(*-T) dr, t ~> 0 (3) 

where M(t; co) is the random function describing the evolution of the system 
in time and R(~-; co) is the random rate function. 

Note that we are actually saying here that forfixed t, M(t; co) and R(t; co) 
are random variables defined on some underlying complete probability 
measure space (O, A,/x). We shall be interested in determining conditions 
under which there exists a unique random solution to Eq. (3), where by a 
random solution we mean the following: 

Definition 3.1. By a random solution of Eq. (3) we mean a random 
function M(t; co) where for each t ~ O, M(t: co) has E[  M(t; co)/~ < oo and 
satisfies (3) /z-a.e. 

With respect to the functions appearing in Eq. (3), we shall make the 
following assumptions. For each t ~> 0 the random variable M(t; co) has 
finite variance and there exists a constant Q independent of T such that 
d R(r; co)[ ~< Q /x-a.e. These restrictions are necessary for our theoretical 
development. Their validity in the physical sense will be commented on later, 

4. T H E O R E T I C A L  P R E L I H I N A R I E S  

In order to investigate the question of the existence and uniqueness of  
a random solution to Eq. (3) we shall need to call upon some of the theoretical 
results pertaining to random integral equations of the Volterra type recently 
obtained by Tsokos. (11) We shall state here a few pertinent definitions and 
a theorem relevant to the present problem. For  a more complete discussion 
of  the theoretical framework underlying this type of equation the reader is 
referred to the above-mentioned work. 

We shall be concerned with a random integral equation of the Volterra 
type of the form 

x(t; co) = h(t; co) @ fo k(t, ~'; co)f(~-, x(~-; co))dr, t >~ 0 (4) 

where (i) t ~ x(t; co) is a map from R+, the nonnegative real numbers, into 
L2(~2, A, Ix), the usual Lebesgue space with respect to the complete probability 
measure space (.(2, A,/x); (ii) t -~f(t ,  x(t; co)) is a map from R+ into L2(O, A,/z); 
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(iii) t --* h(t; co) is a map from R+ into L~(D, A,/z); (iv) (t, -c) ~ k(t ,  % o)) 
is a continuous map from 

A = { ( t , r ) :  0 ~<z ~<t < oo} 

into Loo(~2, A,/z). Note that L~o(D, A,/~) is the usual Lebesgue space of/L 
essentially bounded functions with respect to (D, A,/~). We denote the norm 
in L~([2, A,/z) by Ill "111. 

Definition 4.1. We shall denote by C the Banach space of all con- 
tinuous and bounded x(t; to) from R+ into L2(f2, A,/~). 

Note that the norm in the space C is defined by 

I[ x(t; to)tic = sup {1[ x(t; to)ll} 
0%t  

where I1"11 = II �9 IIL~<~,A,.> �9 

D e f i n i t i o n  4.2. We call x(t; co) a random solution of Eq. (4) if for 
each t e R+,  x(t;  to) is an element of L2(~2, A, ~) and satisfies (4)/x-a.e. 

Definition 4.3. A function z(t, x)  mapping R+ • R ~ R (the reals) 
is said to be continuous in t uniformly in x if given tn -+ t in R+ and e > 0, 
there exists a natural number N~ such that for n > N~ , I z(tn , x)  - -  z(t, x)l < E 
for every x e R. 

We now state the following theorem, which will be applicable to our 
study of Eq. (3). The proof is based on Banach's fixed-point theorem and 
may be found in the work by Tsokos. m) 

T h e o r e m  4.1. If Eq. (4) satisfies the conditions: (i) there exists a 
number A > 0 such that 

folLt k( t ,  . ;  ~o)111 d~- ~< A for t ~ R+ 

(ii) f ( t ,  x)  is continuous in t uniformly in x from R+ • R --~ R; there exists 
a constant B such that I f ( t ,  0)[ <~ B for t ~ R+; and 

I f ( t , x ) - f ( t , y ) l  < ~ h l x - y l  for some ? t > 0  

and (iii) h(t; oa) ~ C; then there exists a unique random solution x(t; co) ~ C 
such that 1[ x(t; to)[Ic <~ P provided 11 h(t; oa)[Ic, h, and [If(t, 0)[[c are sufficiently 
small. 
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Note that when we say "sufficiently small" we mean small in the sense 
that 

AK < 1 and IJ h(t; co)Hc + K]lf(t ,  0)l]c ~< p(1 -- AK) 

where K is the norm of the linear operator T given by 

(Tx)(t; co) = ( k(t, ~-; co)x(r; co)dr 
ao 

5. E X I S T E N C E  O F  A R A N D O M  S O L U T I O N  

In order to use the theoretical results of Section 4 we shall make the 
following identifications: 

x(t; co) ~ M(t; co), h(t; co) ~ M(0; co) e -~ 

k(t, ~-; co) ~ R(~'; co) e -cl~-~), f(-c, x(~-; co)) ~ 1 

In this manner Eq. (3) takes the familiar form 

t 

x(t; co) -= h(t; co) + / o  k(t, -r; co)f(~', x(~'; co)) dr, t >~ 0 

In order to then apply theorem 4. I to obtain information concerning the 
existence and uniqueness of a random solution to Eq. (3) it is necessary to 
derive conditions under which the basic assumptions of Section 4 and the 
hypothesis of theorem 4.1 are met. To this end we state the following defini- 
tion: 

D e f i n i t i o n  5.1. Let G be a family of functions from a topological 
space (X, ~-) into a metric space (Y, ~). The family is said to be equicontinuous 
on X if given any p 6 X, pn --+ p, and e > 0, there exists a positive number 
N,,~ such that n > N,,~ implies that cr[g(p,), g(p)] < e for all g ~ G. 

Theorem 5.1. I f  G = {e-cl*-~)R(~-; co): co ~ ~} is an equicontinuous 
family of functions from A into R, then there exists a unique random solution 
of Eq. (3) provided J] M(0; co) e -~* [Ic, ~, and [rf(t, 0)[]c are sufficiently small. 

Proof. Fix t ~ R+. By assumption M(t; co) has finite variance, which 
implies that for each t, M(t; co) ~ L2(C2, A, ~). Since f ( t ,  x(t; co)) _= 1 and 
(s A,/x) is a probability space and hence a finite measure space, f (t, x(t; co)) 
L~(D, A,/x) for each t ~ R+. Since for fixed t, e -c~ is a constant and since 
M(0; co) has finite variance, we can conclude that for each t, h(t; co) ~ L2(D,A,I~ ) 
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Hence the first three conditions of  our theoretical f ramework are met by the 
functions of Eq. (3). Now fix (t, r) ~ A. 

Recall that  k(t ,  r; co) --~ R(7; co) e -~(~-'). Since by assumption 

we have 

I R(r ;  oo)1 <~ Q, /x-a.e. 

l k(t ,  r; o0)] = [ R(r;  co) e -~r162 I ~< Qe -~r /~-a.e. 

This implies that  (t, r)  --~ k(t ,  r; co) is indeed a map from A into L~o(D, A,/~). 
To show that  this map is continuous, let (t~, r~) --~ (t, r). Choose e > 0. 
By the equicontinuity condition, there exists an Nr such that  n > N~ implies 

[ e-d~-~')R(r~ ; o0) -- e-dt-r o0)1 < E, each co 

Thus by definition of the infinity norm, for n > N~ 

Ill e-~(~"-")R('r,~ ; o0) - -  e-~(~-~)R(r; o0)lll < E 

However, this simply implies that  for n > N~ 

111 k(t~ , r~; co) - -  k(t ,  r; o0)111 < �9 

as was to be shown. 
To show that  the hypothesis of theorem 4. t is satisfied, consider 

fot fo' e-~ IH k(t ,  r; o~)H [ dr  ~- III o0)[H dr  

= fo* e-~*e~ [11R(r; co)H I dr  

t 

<~ Qe-Ct fo e ~ dr  = (Qe/c)-Ct(e ~ t -  1) 

= (Q/c)(1 - -  e -e*) ~ Q/c 

Since f ( t ,  x )  =~ 1, f ( t ,  x)  is trivially continuous in t uniformly in x; B = 1 
will suffice to satisfy the second condition of hypothesis (ii) of theorem 4.1 and 

f f ( t , x ) - - f ( t , y ) l = - i l - - l l = - O < ~ A l x - - y l  for any A > 0  
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To see that  h(t;  co) ~ C, let tn -+ t in R+ and choose E > 0. IfH M(0; co)l] :/: 0, 
choose N such that  n > N implies 

I e -~t" - -  eCt[ < e/[r M(O;  co)[l 

Then for n > N we have 

JI M(0; co) e -c t .  - -  M(0; co) e -ct  II = I e -~t" - -  e-~t ] [I M(0; co)lJ 

~< [~/11 M(O; co)ll] H M(O; co)[l = E 

If  II M(O; co)ll = O, then trivially 

11M(0; co)e - -  M(0; co) e -~t I] < e 

Thus t --~ h(t; co) is cont inuous f rom R+ into L2(f2, A, /Q.  To  see that  the 
map is bounded,  consider 

[l M(0; co) e -~t [I : e-~t II M(0; co)[[ ~< II M(0,  co)ll 

Thus the conditions of  theorem 4.1 are satisfied by the functions of  Eq. (3) 
and we can conclude that  there exists a unique random solution of  Eq. (3) 
provided [I h(t;  co)[[c = [I M(0; co) e -~t [[c, A, and [If(t, 0)[[c are sufficiently 
small. 

Note  tha t  when we say that  the above quantities are "sufficiently small" 
we mean small in the sense that  

AK < 1 and [r m(0;  co) e -ct [[c + K j l f ( t ,  0)][c ~< p(1 --  AK) 

Note  also that  

l] M(0; co) e -ct  [[c = sup e -at II M(0; co)l[ : H M(0; co)l] 
0~<t 

and that  [If( t ,  0)llc = 1. Hence we are actually requiring that  

AK < 1 and [[ M(0; co)ll + K ~< p(1 - -  AK) 

Since in this case A can be any positive number,  the first condit ion can easily 
be satisfied. Hence we will have a unique random solution M ( t ;  co) such that  
for  each t 

E I  M ( t ;  co)]z ~< p 

provided that  

E]  M(0; co)j2 sufficiently small 
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6. C O M P U T E R  S I M U L A T I O N  

In order to obtain graphical representations for this biochemical process 
utilizing its stochastic implications, data have been generated through random 
simulations. Three basic models, each successively more general, were 
employed to depict various aspects of the physical system. 

Case I. A one-organ system (Fig. 1), whose input was subjected to an 
internal exponential diffusion process, is investigated. The input concentration 
K e  -~'~ with K the initial metabolite level is shown by Fig. 2; the concentration 
rate of change, that is, the input minus the output with respect to time is 
depicted by Fig. 3, and the organ's emission is given by Fig. 4. Finally, the 
metabolite concentration is shown in Fig. 5. 

input I ORGAN --~ output 

Fig. 1. One-organ model .  

SYSTEM 
I N P U T  
(MOLES) 

CASE I 

1.99 c~ = .5 

K = 2.0 

1,59 

1.19 , ~ t  

. 7 9  " 

, 3 9  " 

. 0 o  ! I l I l I ' 
, o o  .7o 1.41 2.12 2.83 3;54 4,25 4.95 

TIME ( m i n u t e s )  

Fig. 2. Input concentrat ion K e  -~'~ with K = 2.0, c~ = 0.50. 
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SYSTEM 
INPUT-OUTPUT o 
(MOLES) 

4,48 - 
Input concentration Ke -=~ 

2,72- 

.97 - 

.78 I I I 
.00 .70 1.41 2.12 

~ . 5  

K =  2.0 

I I I I 

2.83 3.54 4.25 4.95 

TIME (minute) 

Fig. 3. Rate of change of metabolite for single-organ model. 

ORGAN 
OUTPUT 
(MOLES) 

3.19- 

0.00 

.00 

C ~  .5 

K =  2.0 

Input concentration Ke -a~ 

.70 1.41 2.12 2.83 3.54 
I 

4.25 

TIME (minutes) 

Fig. 4. Organ output with respect to time for one-organ model. 

4.95 
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METABOLITE 
CONCENTRATION 

(MOLES) 

CASEI 

7 .~ "  

4,79 - 

8 

Fig. 5. 

O.00 

.O0 

Input Concentration. Ke -st 

I I -  I I / 
.70 1,41 2.12 2,83 3, 54 

TIME {minutes} 

Metabolite concentration for one-organ system. 

~ . 5  

K =  2.0 

i i 
4,25 4.9=3 

ORGAN 

Fig. 6. Organ-heart model. 

Case I I .  An extension of the one-organ model includes the heart as a 
pumping station (Fig. 6), along with a time lag effect between heart and organ. 
Two variations of this model are studied depending on the time interval of 
the initial injection. At first the injection is administered for a short, specified 
interval, and second, it is administered continuously throughout the period 
o f  observation. In the former case the concentration rate of change, organ 
output, and metabolite concentration are shown by Figs. 7, 8, and 9, respec- 
tively, and in the latter instance, in Figs. 10, 11, and 12, respectively. 

Case  I I I .  A more sophisticated and biologically accurate model is 
schematically given by Fig. 13. The metabolite is synthesized in the liver and 
passed into plasma from which it either is excreted or continues to the 
interstitial sites, the tissue fluids. In the latter instance the metabolite returns 
to plasma and is recirculated. In each of the above compartments a Brownian- 
type diffusion process occurs. That is, the metabolite in each compartment 
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SYSTEM 
INPUT-OUTPUT 
(MOLES} 

2 0 - O . 5 t  Ini t iaZ Injection . e 

.33- 

1.87 I 

O.QO ,74 ~AB 2.23 2.97 3.72 4.46 5.21 5,f~ 

TIME (minute) 

Fig. 7. Rate of change of metabolite for heart-organ model with initial injection of 
2.0 moles for 0.50 min. 

ORGAN 
OUTPUT 
(MOLES1 

4,79- 

3.1g" 

1.59~ 

0.00" 

0,00 

Imitial Injec=ion 3 , 0 e  - 0 " 5 ~  

I 

.74 1.48 2.23 2.97 3.72 4,46 ~.21 5.9~ 

TIME {minutes} 

Fig. 8. Organ emission with respect to time for heart-organ system with initial injection 
of 2.0 moles for 0.50 rain. 
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7.~9' 

6.39" 

4,79- 

8 

3.1S- 

Initial In~ection 2.0e -0"5~ 

6 .  

0.6O 34 1,48 223 2~7 3.72 4,46 5.21 5.96 

TIME (minutes} 

Metabolite concentration for heart-organ model with initial injection of 2.0 moles 
for 0.50 rain. 

METABOLITE 
CONCENTRATION 
(MOLES) 

Fig. 9. 

CASE II 

4,O6" 

SYSTEM 
RATE OF CHANGE 
(MOLES) 

2.10 " 

,13 �9 

1.83. 

.00 

Continuous InoculaEion 2,0e -e 

I i I I t % . . . . . .  i . . . . . . .  , 

.81) 1.60 2A1 321 4,O2 4.82 5~63 6A4 

TIMS (minbter 

Fig. I0. Rate of change of concentration for heart-organ model with 
continuous inoculation. 
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CASEI I  

ORGAn1 
OU~UT 
(MOLES) 

7.99 - 

0.00 
l 

.0O .80 

- t  

I 
1.60 2.41 3,21 4,02 4,82 5.63 ~,44 

TIME (minute) 

Fig. 11. Organ emission for heart-organ system with continuous inoculation. 

METABOLITE 
CONCENTRATION 
(MOLES) 

Fig. 12. 

629 - -  

4.79 - -  

3.19" 

1.E9" 

O.o~ 

.00 

Continuous Inoculation 2,Oe -c 

t t I * l ~ t l 

.BO 1.60 Z41 321 4.02 4.82 5.63 6.44 

TIME Iminut~) 

Metabolite concentration for heart-organ system with continuous inoculation. 

82218/I-7 
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undergoes an exponential diffusion process. The input to the liver, plasma, 
and tissue fluids is depicted by Figs. 14, 15, and 16, respectively, while the 
output from these chambers is shown by Figs. 17-19. The metabolite concen- 
tration is given by Fig. 20 and the various rates of change for each compart- 
ment are shown in Figs. 21-23. 

7 .  S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

We have been forced due to mathematical considerations to make several 
assumptions concerning the random functions M(t; to) and R(t; to). Namely 
we assume that {M(t; co): t ~ R+} is a second-order stochastic process and 
that for each t, R(t; co) is /~-essentially bounded and furthermore that the 
bound is uniform over R+. These restrictions make our particular approach 
to the problem possible. Although these restrictions appear on the surface 

I ~ ~ TISSUE 
LIVER PLASMA FLUIDS 

Fig. 13. Multicompartment model. 
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.~ .35 .70 1.~ 1.41 ~.77 2.12 2.47 
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Fig. 14. Input to liver using 2.0 moles concentration in multicompartment model. 
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Fig. 15. Plasma input for multicompartment model. 
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Fig. 16. Tissue input for multicompartment model. 
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239 

0.00 I ' l  I '  I I I I 
:CO ,70. 1A1 2.1Z 2.83 3,54 4.25 4,35 
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Fig. 17. Liver output for multicompartment model. 
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Fig. 18. Plasma output for multicompartment model. 
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Tissue output for multicompartment model. 
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Fig. 20. Cumulative metabolite concentration in multichamber system. 



98 J. Susan Hilton, Chris P. Tsokos, and S. T. Hardiman 
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Fig. 21. Concentrat ion rate o f  change with respect to the liver. 
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Concentrat ion rate of  change with respect to the plasma.  
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CASE I1| 
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, 1 2  - , ~ I ! I I r 

.DO .70 1.41 2.12 2.83 3.54 4.15 4,95 
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Concentration rate of change with respect to the tissue fluids. 

to be quite strong, in practice they are in many cases easily satisfied due to 
the physical or chemical characteristics of the system under study. The 
assumption that M(t; co)~ L2(f2, A, fx) for each t E R+ is implied by the 
biological limitations of the physical metabolic process. Also, within a given 
system the metabolic rate is bounded for each t ~ R+ as a result of the 
occurring physical and chemical reactions. 

To demonstrate the accuracy and usefulness of our procedure, we have 
investigated several models through the utilization of random computer 
simulations. Graphs were presented depicting the various resultant phenomena 
using different random generators. 

Figure 2 depicts the input concentration Ke -~ with K = 2.0 moles and 
c~ = 0.5. The concentration rate of change, given by Fig. 3, and the organ 
output, given by Fig. 4, result from the exponential nature of the injected 
metabolite. After an initial interval, dependent upon the organ length, the 
graphs demonstrate the anticipated exponential characteristics. That is, the 
organ emission commences following a small delay due to the metabolite's 
passage through the organ and then declines gradually indicating the 
decreasing exponential form of the input concentration. The metabolite 
concentration, Fig. 5, starts at the origin and increases to a peak which runs 
at approximately the same time as the organ output commences. At this 
moment, due to the decreasing functional input, the concentration begins 
to taper with a small trough occurring at the end of the output interval from 
which the graph, again, tends to zero. 
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Varying the model to include the heart as the pumping agent within a 
one-organ cycle, Fig. 6, the effect of two types of input concentration were 
investigated. First, the injection was administered for a time interval less 
than that required to complete the system cycle in order to depict the long- 
range diffusion behavior of a single inoculation. The graphs (Figs. 7-9) 
demonstrate the involved diffusion process through the observed dampening 
effect upon the metabolite concentration allowing for the cycle time lag. The 
final concentration, Fig. 9, slowly tends toward zero with respect to time, 
showing the physical and biological utilization of the metabolite by the body. 
This effect is clearly indicated by examining Fig. 8, the metabolite concentra- 
tion leaving the organ, which exhibits a gradual decline adjusted for cycle 
length. 

In order to study the continuing aspects of this biological process, the 
initial infusion was considered to occur for several transversals of the heart- 
organ cycle with termination prior to the end of observation time. Figures 
10-12 depict at equal intervals the concentration increase due to the continued 

injection of metabolite. After terminating the inoculation period it is seen 
that the process reverts to that investigated prior in Figs. 7-9. Again the 
inherent diffusion process is observable in the dampening nature of the 
metabolite found in the various parts of the biochemical system. 

Finally, a more general model was studied, Fig. 13, in an attempt to 
consider a more complete biological setting. We investigated the interchange 
of metabolite between the blood and tissue fluids. The metabolite was 
injected into the system on a continuous basis and the concentration at various 
positions in the model tabulated graphically. These graphs (Figs. 14-23) 
depict the inherent physical and biochemical characteristics of metabolic 
distribution processes as seen above and thus the scientist is permitted to 
extend the system to include more relevant details without the loss of any 
pertinent results. 

In conclusion let us say that the proposed random model is, we believe, 
a more realistic description of a general first-order metabolizing system than 
is the deterministic formulation and should be used whenever possible. 
A major point to be made is that if a deterministic model is used when in fact 
the functions involved are random, then the results obtained could be quite 
unrealistic; however, if a stochastic model is used when a deterministic model 
would suffice, then nothing is lost. 

The scope of the model is not restricted to the study of metabolizing 
systems; it can be very easily adopted to be applicable to many other 
problems--for example, it can be used to study pollution in a lake. 
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